« Consommation des avions » : différence entre les versions
Aller à la navigation
Aller à la recherche
Aucun résumé des modifications |
|||
(4 versions intermédiaires par 2 utilisateurs non affichées) | |||
Ligne 11 : | Ligne 11 : | ||
Diagramme de classes ou modèle RDF (comme vue en cours) | Diagramme de classes ou modèle RDF (comme vue en cours) | ||
[[Fichier: | [[Fichier:MALTI RDF4.png|center|Schéma RDF|800px]] | ||
=== Vocabulaire === | === Vocabulaire === | ||
Ligne 78 : | Ligne 78 : | ||
=== Requêtes === | === Requêtes === | ||
https://linkedwiki.com/query/List_of_airplains_Demo | |||
A retester lundi : | A retester lundi : | ||
<pre> | <pre> | ||
Ligne 124 : | Ligne 124 : | ||
} | } | ||
LIMIT 100 | LIMIT 100 | ||
# colstyle=col1_img_max-width:150px;col2_img_max-width:150px | |||
</pre> | </pre> | ||
Ligne 155 : | Ligne 156 : | ||
== Démonstration == | == Démonstration == | ||
[[Fichier:MALTI results screenshot.png|center|results|width=50]] | [[Fichier:MALTI results screenshot.png|center|results|width=50]] | ||
Code python de cette vue : | |||
<syntaxhighlight lang="python"> | |||
from flask import Flask, render_template, request | |||
from SPARQLWrapper import SPARQLWrapper, JSON | |||
import pandas as pd | |||
import plotly as py | |||
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot | |||
import plotly.graph_objs as go | |||
from base64 import b64encode | |||
import matplotlib.pyplot as plt | |||
import os | |||
app = Flask(__name__) | |||
app.static_folder = 'static' | |||
######################################## | |||
## this function retrieves the airplanes | |||
## data from wikidata, through SPARQL | |||
######################################## | |||
def get_results(): | |||
sparql = SPARQLWrapper("https://query.wikidata.org/sparql", | |||
agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11") | |||
sparql.setQuery(""" | |||
PREFIX bd: <http://www.bigdata.com/rdf#> | |||
PREFIX wikibase: <http://wikiba.se/ontology#> | |||
PREFIX wdt: <http://www.wikidata.org/prop/direct/> | |||
PREFIX wd: <http://www.wikidata.org/entity/> | |||
select ?avion ?avionLabel ?countryLabel ?firstFlightDate ?eventsLabel ?avionDescription ?image | |||
where { | |||
?avion wdt:P31 wd:Q11436. | |||
# wd:Q478798 wd:Q11436. | |||
?avion wdt:P17 ?country. | |||
# ?avion wdt:P580 ?events. | |||
optional { | |||
?avion wdt:P18 ?image. | |||
?avion wdt:P793 ?events. | |||
?avion wdt:P606 ?firstFlightDate. | |||
} | |||
# Doc : https://www.mediawiki.org/wiki/Wikidata_query_service/User_Manual#Label_service | |||
# SELECT ?variableLabel ?variableAltLabel ?variableDescription | |||
SERVICE wikibase:label { | |||
bd:serviceParam wikibase:language "en,fr" . | |||
} | |||
} | |||
LIMIT 1000""") | |||
sparql.setReturnFormat(JSON) | |||
results = sparql.query().convert() | |||
results = results["results"]["bindings"] | |||
return results | |||
################################################################# | |||
## aggregates the data to get produced airpalnes count by country | |||
################################################################# | |||
def get_counts(): | |||
results = get_results() | |||
columns = ["avion", "avionLabel", "countryLabel", "firstFlightDate", "eventsLabel", "avionDescription", "image"] | |||
data = pd.DataFrame(columns=columns, index=range(len(results))) | |||
for i, result in enumerate(results): | |||
for col in columns: | |||
if col in result.keys(): | |||
data.loc[i, col] = result[col]['value'] | |||
agg_data = data.groupby(["countryLabel"]).size().reset_index(name='count').sort_values(['count'], ascending=False) | |||
return data, agg_data | |||
################## | |||
## draw the map ## | |||
################## | |||
def plot_map(image_name="produced_aircrafts_counts.png"): | |||
raw_data, agg_data = get_counts() | |||
data = dict( | |||
type='choropleth', | |||
colorscale='Jet', | |||
locations=agg_data['countryLabel'], | |||
locationmode="country names", | |||
z=agg_data['count'], | |||
text=agg_data['countryLabel'], | |||
colorbar={'title': 'produced airplanes'}, | |||
) | |||
layout = dict( | |||
title='number of aircraft produced per country', | |||
geo=dict(showframe=False, projection={'type': 'mercator'}) | |||
) | |||
chmap = go.Figure(data=[data], layout=layout) | |||
chmap.to_image(format="png", engine="kaleido") | |||
chmap.write_image(image_name) | |||
return raw_data, agg_data | |||
########################################### | |||
########### MAIN FUNCTION ########### | |||
########################################### | |||
@app.route("/") | |||
def home(): | |||
image_name = "produced_aircrafts_counts.png" | |||
data, agg_data = plot_map("static/photos/"+image_name) | |||
data = data.drop(["image"], axis=1) | |||
# return render_template("index.html", l={"map": plot_map()}) | |||
return render_template("index.html", data=agg_data, image_name = image_name, results_count= len(data), | |||
agg_tables=[agg_data.to_html(classes='data')], agg_titles=agg_data.columns.values, | |||
data_tables=[data.to_html(classes='data')], data_titles=data.columns.values) | |||
</syntaxhighlight > |
Version actuelle datée du 21 juin 2021 à 05:47
Cette page sert à afficher le nombre d'avions produits par chaque pays.
Objectif
Aujourd'hui, les constructeurs d'avions ne cessent de produire de nouveaux types d'avions (Boeing,Airbus ...), ces derniers peuvent varier selon la taille, le but (commercial, indistruel ...) et leur consommations. Cependant, cela impacte notre environnement écologique.
Le but principal de cette application est de montrer les pays qui ont produis le plus d'avions.
Définition de votre graphe de connaissances
Schema
Diagramme de classes ou modèle RDF (comme vue en cours)
Vocabulaire
Base
BASE <https://data.escr.fr/wiki/Consommation_des_avions#>
Préfixes
PREFIX ex: <http://www.example.org/>
PREFIX bd: <http://www.bigdata.com/rdf#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
Classes
Aircraft
<Aircraft> rdf:type rdfs:Class .
Airplane
<Airplane> rdf:type rdfs:Class .
<Airplane> rdfs:subClassOf <Aircraft>.
Engine
<Engine> rdf:type rdfs:Class .
<Engine> rdfs:subClassOf <Airplane>.
Propriétés
country
<country> rdf:type rdf:Property.
- Cette propriété définit le pays de fabrication de l'avion.
poweredBy
<poweredBy> rdf:type rdf:Property;
rdfs:domain <Engine>.
- Cette propriété définit le moteur de l'avion.
consumption
<consumption> rdf:type rdf:Property.
- Cette propriété définit la consommation du moteur de l'avion.
Exemple d'un jeu de données
wd:Q2107964 <consumption> "22.1"^^xsd:decimal .
Requêtes
https://linkedwiki.com/query/List_of_airplains_Demo A retester lundi :
BASE <https://data.escr.fr/wiki/Consommation_des_avions#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX bd: <http://www.bigdata.com/rdf#> PREFIX wikibase: <http://wikiba.se/ontology#> PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> select ?avion ?imageAvion ?imageMotor ?avionLabel ?countryLabel ?avionDescription where { ?motor <consumption> ?consommation . SERVICE <https://query.wikidata.org/sparql> { ?avion wdt:P31/wdt:P279* wd:Q15056993 ; wdt:P516 ?motor . OPTIONAL { ?avion rdfs:label ?avionLabel . FILTER (langMatches(lang(?avionLabel), "en")) } OPTIONAL { ?avion rdfs:label ?avionDescription . FILTER (langMatches(lang(?avionDescription), "en")) } OPTIONAL { ?avion wdt:P18 ?imageAvion . } OPTIONAL { ?avion wdt:P495 ?country . ?country rdfs:label ?countryLabel . FILTER (langMatches(lang(?countryLabel), "en")) } OPTIONAL { ?motor wdt:P176 ?manufacturer . } OPTIONAL { ?motor wdt:P18 ?imageMotor . } } } LIMIT 100 # colstyle=col1_img_max-width:150px;col2_img_max-width:150px
Vérification que le vocabulaire est bien chargé :
Démonstration
Code python de cette vue :
from flask import Flask, render_template, request
from SPARQLWrapper import SPARQLWrapper, JSON
import pandas as pd
import plotly as py
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
import plotly.graph_objs as go
from base64 import b64encode
import matplotlib.pyplot as plt
import os
app = Flask(__name__)
app.static_folder = 'static'
########################################
## this function retrieves the airplanes
## data from wikidata, through SPARQL
########################################
def get_results():
sparql = SPARQLWrapper("https://query.wikidata.org/sparql",
agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11")
sparql.setQuery("""
PREFIX bd: <http://www.bigdata.com/rdf#>
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
select ?avion ?avionLabel ?countryLabel ?firstFlightDate ?eventsLabel ?avionDescription ?image
where {
?avion wdt:P31 wd:Q11436.
# wd:Q478798 wd:Q11436.
?avion wdt:P17 ?country.
# ?avion wdt:P580 ?events.
optional {
?avion wdt:P18 ?image.
?avion wdt:P793 ?events.
?avion wdt:P606 ?firstFlightDate.
}
# Doc : https://www.mediawiki.org/wiki/Wikidata_query_service/User_Manual#Label_service
# SELECT ?variableLabel ?variableAltLabel ?variableDescription
SERVICE wikibase:label {
bd:serviceParam wikibase:language "en,fr" .
}
}
LIMIT 1000""")
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
results = results["results"]["bindings"]
return results
#################################################################
## aggregates the data to get produced airpalnes count by country
#################################################################
def get_counts():
results = get_results()
columns = ["avion", "avionLabel", "countryLabel", "firstFlightDate", "eventsLabel", "avionDescription", "image"]
data = pd.DataFrame(columns=columns, index=range(len(results)))
for i, result in enumerate(results):
for col in columns:
if col in result.keys():
data.loc[i, col] = result[col]['value']
agg_data = data.groupby(["countryLabel"]).size().reset_index(name='count').sort_values(['count'], ascending=False)
return data, agg_data
##################
## draw the map ##
##################
def plot_map(image_name="produced_aircrafts_counts.png"):
raw_data, agg_data = get_counts()
data = dict(
type='choropleth',
colorscale='Jet',
locations=agg_data['countryLabel'],
locationmode="country names",
z=agg_data['count'],
text=agg_data['countryLabel'],
colorbar={'title': 'produced airplanes'},
)
layout = dict(
title='number of aircraft produced per country',
geo=dict(showframe=False, projection={'type': 'mercator'})
)
chmap = go.Figure(data=[data], layout=layout)
chmap.to_image(format="png", engine="kaleido")
chmap.write_image(image_name)
return raw_data, agg_data
###########################################
########### MAIN FUNCTION ###########
###########################################
@app.route("/")
def home():
image_name = "produced_aircrafts_counts.png"
data, agg_data = plot_map("static/photos/"+image_name)
data = data.drop(["image"], axis=1)
# return render_template("index.html", l={"map": plot_map()})
return render_template("index.html", data=agg_data, image_name = image_name, results_count= len(data),
agg_tables=[agg_data.to_html(classes='data')], agg_titles=agg_data.columns.values,
data_tables=[data.to_html(classes='data')], data_titles=data.columns.values)